409 research outputs found

    Global Diffusion of the Internet VII- Teledensity Growth Strategies for Latin America: The Case of Colombia and Ecuador

    Get PDF
    The Internet in developing countries grew substantially in recent years. Given the large income disparities and low telephone penetration. rates in most Latin American countries, only about 4% of the region\u27s population can access the Internet. The International Telecommunication Union reports that teledensity (the number of telephone land-lines per 100 people) in Latin America is currently at about 10.8%. Prior research identified specific factors that hinder growth of teledensity in developing countries and specific strategies used to overcome such limitations. This study investigates Latin American telecommunication stakeholders\u27 perspective of how these strategies can be used to address teledensity growth in the region. Survey participants (Latin America\u27s telecommunications stakeholders) analyzed the strategies critically and modified, enhanced, or added new insights. Using appropriate statistical procedures we examined the telecommunications stakeholders\u27 perceptions to find potential solutions the low teledensity problem. Qualitative comments to support the stakeholders\u27 responses are reported, together with future research implications

    Dam type and lake position characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019

    Get PDF
    Department of Geosciences, Warner College of Natural ResourcesIce-marginal lakes impact glacier mass balance, water resources, and ecosystem dynamics, and can produce catastrophic glacial lake outburst floods (GLOFs). Multitemporal inventories of ice-marginal lakes are a critical first step in understanding the drivers of historic change, predicting future lake evolution, and assessing GLOF hazards. Here, we use Landsat-era satellite imagery and supervised classification to semi-automatically delineate lake outlines for four ~5 year time periods between 1984 and 2019 in Alaska and northwest Canada. Overall, ice-marginal lakes in the region have grown in total number (+183 lakes, 38% increase) and area (+483 km2, 59% increase) between the time periods of 1984–1988 and 2016–2019, though 56% of inventoried lakes did not experience detectable change. Changes in lake numbers and area were notably unsteady and nonuniform. We demonstrate that lake area changes are connected to dam type (moraine, bedrock, ice, or supraglacial) and the spatial relationship to their source glacier (proglacial, detached, unconnected, ice, or supraglacial), with important differences in lake behavior between the sub-groups. In strong contrast to all other dam types, ice-dammed lakes decreased in number (–6, 9% decrease) and area (–51 km2, 40% decrease), while moraine-dammed lakes increased (+56, 26% and +479 km2, 87% for number and area, respectively), a faster rate than the average when considering all dam types together. Proglacial lakes experienced the largest area changes and rate of change out of any lake position throughout the period of study, and moraine-dammed lakes which experienced the largest increases are associated with clean-ice glaciers (<19% debris cover). By tracking individual lakes through time and categorizing lakes by dam type, subregion, and location, we are able to detect trends that would otherwise be obscured if these characteristics were not considered. This work highlights the importance of such lake characterization when performing ice-marginal lake inventories, and provides insight into the physical processes driving recent ice-marginal lake evolution

    Modeling the shape and evolution of normal-fault facets

    Get PDF
    Facets formed along the footwalls of active normal-fault blocks display a variety of longitudinal profile forms, with variations in gradient, shape, degree of soil cover, and presence or absence of a slope break at the fault trace. We show that a two-dimensional, process-oriented cellular automaton model of facet profile evolution can account for the observed morphologic diversity. The model uses two dimensionless parameters to represent fault slip, progressive rock weathering, and downslope colluvial-soil transport driven by gravity and stochastic disturbance events. The parameters represent rock weathering and soil disturbance rates, respectively, scaled by fault slip rate; both can be derived from field-estimated rate coefficients. In the model's transport-limited regime, slope gradient depends on the ratio of disturbance to slip rate, with a maximum that represents the angle of repose for colluvium. In this regime, facet evolution is consistent with nonlinear diffusion models of soil-mantled hillslope evolution. Under the weathering-limited regime, bedrock becomes partly exposed but microtopography helps trap some colluvium even when facet gradient exceeds the threshold angle. Whereas the model predicts a continuous gradient from footwall to colluvial wedge under transport-limited behavior, fully weathering-limited facets tend to develop a slope break between footwall and basal colluvium as a result of reduced transport efficiency on the rocky footwall slope. To the extent that the model provides a reasonable analogy for natural facets, its behavior suggests that facet profile morphology can provide useful constraints on relative potential rates of rock weathering, soil disturbance, and fault slip

    Wear of human teeth: a tribological perspective

    Get PDF
    The four main types of wear in teeth are attrition (enamel-on-enamel contact), abrasion (wear due to abrasive particles in food or toothpaste), abfraction (cracking in enamel and subsequent material loss), and erosion (chemical decomposition of the tooth). They occur as a result of a number of mechanisms including thegosis (sliding of teeth into their lateral position), bruxism (tooth grinding), mastication (chewing), toothbrushing, tooth flexure, and chemical effects. In this paper the current understanding of wear of enamel and dentine in teeth is reviewed in terms of these mechanisms and the major influencing factors are examined. In vitro tooth wear simulation and in vivo wear measurement and ranking are also discussed

    A robust method to identify the occurrence of a runoff-generated debris flow

    Get PDF
    Debris flows generated by rainfall runoff can occur in rocky alpine landscapes and burned steeplands. Runoff-generated debris-flow events are commonly composed of a series of dense granular surge fronts separated by water-rich flows. Owing to this intra-event variability in flow composition and mechanics, post-event interpretations of preserved sedimentary deposits, or lack thereof, can result in a dizzying mix of interpretations that range from clearwater flow to debris flow. Accurate identification of the presence or absence of a debris flow during a runoff event is critical for building empirical models used to predict likelihood of debris-flow occurrence, rainfall thresholds, and flow properties. Here, we propose a simple, quantitative method to identify the occurrence of a runoff-generated debris flow, based on a dimensionless discharge Q* calculated as the ratio of the peak event discharge Qp to the theoretical maximum clearwater runoff rate Qw. Using a preliminary compilation of Q* values from floods and runoff-generated debris flows, we find 98% of floods have Q* values < 1.6, whereas 91% of debris flows have Q* values greater than 1.6. Estimating Q* is typically straightforward as part of standard post-event reconnaissance if suitable rainfall estimates are available, and appears to be a robust indicator that runoff-generated debris flows traversed a particular portion of a valley network

    The spatial distribution of debris flows in relation to observed rainfall anomalies: Insights from the Dolan Fire, California

    Get PDF
    A range of hydrologic responses can be observed in steep, recently burned terrain, which makes predicting the spatial distribution of large debris flows challenging. Studies from rainfall-induced landslides in unburned areas show evidence of hydroclimatic tuning of landslide triggering, such that the spatial distribution of events is best predicted by the observed rainfall anomaly relative to climatic norms rather than by absolute rainfall. In this paper, we test whether the spatial distribution of debris flows in response to rainfall can be similarly predicted by rainfall anomaly. The 520 km2 Dolan Fire burn scar in Monterey County, California, USA, spans a sharp hydroclimatic gradient and experienced a widespread storm in January 2021 that triggered floods and debris flows, providing a natural experiment in which to test this hypothesis. In this study, we use remote and field methods to map debris-flow response and examine its spatial heterogeneity. Together with rainfall data, our mapping reveals that the observed anomalies in peak 15-min rainfall intensity (I15) relative to the intensity of the 1-yr return interval storm predict debris-flow occurrence better than the absolute peak I15. Our findings indicate that debris-flow processes and threshold rainfall required for debris-flow initiation may be tuned to local hydroclimate

    Postfire hydrologic response along the Central California (USA) coast: insights for the emergency assessment of postfire debris-flow hazards

    Get PDF
    The steep, tectonically active terrain along the Central California (USA) coast is well known to produce deadly and destructive debris flows. However, the extent to which fire affects debris-flow susceptibility in this region is an open question. We documented the occurrence of postfire debris floods and flows following the landfall of a storm that delivered intense rainfall across multiple burn areas. We used this inventory to evaluate the predictive performance of the US Geological Survey M1 likelihood model, a tool that presently underlies the emergency assessment of postfire debris-flow hazards in the western USA. To test model performance, we used the threat score skill statistic and found that the rainfall thresholds estimated by the M1 model for the Central California coast performed similarly to training (Southern California) and testing (Intermountain West) data associated with the original model calibration. Model performance decreased when differentiating between “minor” and “major” postfire hydrologic response types, which weigh effects on human life and infrastructure. Our results underscore that the problem of false positives is a major challenge for developing accurate rainfall thresholds for the occurrence of postfire debris flows. As wildfire activity increases throughout the western USA, so too will the demand for the assessment of postfire debris-flow hazards. We conclude that additional collection of field-verified inventories of postfire hydrologic response will be critical to prioritize which model variables may be suitable candidates for regional calibration or replacement

    Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Get PDF
    This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe
    corecore